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RESULTS OF INCLUDING A BOUNDARY SHOCK WAVE IN THE
CALCULATION OF THE FLIGHT PARAMETERS OF
A LARGE HIGH-SPEED METEOR
By E. Dale Martin

Ames Research Center
SUMMARY

The results of including a boundary shock wave in the calculation of the
flight parameters of a large high-speed meteor with rapid vapor ablation are
investigated. The boundary shock wave, a thin viscous region in a gas flowing
rapidly (at high Reynolds number) out of a surface, is characterized by heat
conduction and viscous-compressive stresses such as occur in a shock wave.

The viscous effects represent the translational nonequilibrium induced in the
extreme cases of very rapid vaporization produced by absorption of intense
heat radiation at the surface.

Calculations for the particular case of the Ond¥ejov meteor P¥ibram use a
data curve fitted graphically to the meteor-tracking data. These calculations,
based on the approximate tracking data and on gross approximate equations
describing the vaporization process, indicate that the proper range of condi-
tions was present on the P¥ibram meteor, for a significant portion of its
trajectory, for a very thin, strong boundary shock to occur at the meteor
surface in the vapor, according to the boundary-shock-wave theory. The abla-
tion Reynolds number was high, and significant ratios of density and pressure
across the boundary shock wave result from the calculations. The meteor
entered the atmosphere at about 20.9 km/sec. At an altitude of 55 km, where
the meteor radius was indicated in the idealized calculation to be 18.6 cm,
the order of magnitude of the calculated boundary-shock thickness was in the
order of l/lOOO times the entire thickness of the vapor layer, or about
Tx10™% cm. Although the usual convective heat transfer from the hot air layer
was completely blocked by the efflux of vapor, an estimate according to this
theory indicates high heat conduction at the surface in the boundary shock
(at least 20 percent as large as the radiative heating).

Accounting for the effects of the boundary shock wave substantially
decreases the pressure drag, but the viscous-compressive drag is high, so the
effective drag coefficient (at least in this simplified analysis) is virtually
unchanged by the presence of the boundary shock. Although heat conduction in
the boundary shock is high, it is balanced by the work of blowing off the
vapor against the resistive force due to the viscous stress, and the overall
heating of the body is little affected.

Detailed calculations of the flow about a large high-~speed meteor would
be significantly influenced by the boundary-shock effects, but overall gross



values of the heating and motion parameters calculated by methods used
recently by He Js Allen and N. A. James are valid because of their use of
appropriate assumed values of certain parameters.

INTRODUCTION

An investigation is undertaken to determine what possible effects a
boundary shock wave may have in a simplified calculation of the flight param-
eters of a large high-speed meteor and to determine qualitatively the signifi-
cance of including consideration of the boundary shock wave in this
calculation. A recent theoretical study (ref. 1) investigated the possible
occurrence of the boundary shock wave, a thin region where viscous-flow
effects predominate in the rapidly ablating vapor very near the molten surface
of a body, such as a meteor under certain conditions, moving at a very high
speed through the atmosphere. The viscous effects in the vapor are effects
of the translational nonequilibrium induced by the very high rate of vaporiza-
tion with its attendant high rate of heat conduction into the body.> In the
thin viscous region at the body surface in the vapor, viscous-compressive
stresses (as in a shock wave), accompanied by heat conduction, would be
present, in contrast to the viscous shearing stresses present in boundary-
layer~type flows. However, the layer is much like a boundary layer in that it
is adjacent to a wall and has inviscid flow on only one side. The thickness
of the viscous region becomes vanishingly small as the Reynolds number of the
efflux becomes large, as is true for either a shock wave or a boundary layer
when the appropriate Reynolds number is large.

The rapid change of the flow variables across a boundary shock wave could
significantly affect the flow pattern of the vapor in front of the meteor.
One would then be interested in whether the viscous effects, if they occur,
might also influence significantly the motion and heating of the meteor. The
purpose here, then, is to investigate a known physical situation having condi-
tions under which the boundary shock wave would be possible (according to the
theory of ref. 1) in order to determine the effects.

The importance to aerodynamicists, who.,are concerned with hypervelocity
continuum flow, of acquiring and being able to understand and interpret the
data from flight observations of meteors has been discussed recently by
Allen (ref. 2) and Allen and James (ref. 3). Before knowledge of meteor
phenomena can be applied to the technology of high~speed missiles and space
vehicles, aerodynamicists must have sufficient understanding to predict at
least approximately the motion and heating of meteoric bodies with known
characteristics. Recent analytical studies (see ref. 3) have been very
successful in this respect.

In the analysis presented here, attention will be confined to stone
meteors with vapor ablation rapid enough that the vapor flow divides into

1A more detailed description of boundary shock waves is contained in the
section immediately following the Introduction.



inviscid and thin viscqus regions (see Analysis). Of particular interest is
the OndYejov meteor P¥ibram, a stone meteorite that fell in Czechoslovakia in
1959, for which tracking data were obtained by the Ond¥ejov Observatory

(ref. 4) and for which the mass density is known from recovered fragments.
The P¥{bram meteor undoubtedly had a high rate of vapor ablation over most of
the portion of the trajectory for which the data were taken, so it is a good
example for the study of the boundary-shock effects.

Many idealizations are made in the analysis because of unknown physical
properties, but the order-of-magnitude results obtained are expected to be
qualitatively useful. Precise calculation of the motion and heating of a
large high-speed meteor to determine the effects of a boundary shock wave
would require detailed analysis of the flow field surrounding the meteor.
However, it was deemed appropriate to approach the calculation here in much
the same manner as in reference 3. Rather than a detailed flow-field analysis,
then, this study uses the meteor-tracking data for velocity and acceleration,
which are carefully fitted graphically to what is believed to be the most
reasonable form for the data curve. For the calculation, a set of equations
to determine the appropriate meteor parameters is formulated, which includes
use of: (1) the previously derived results of reference 1 for the equations
relating conditions across the boundary shock wave, (2) conservation equations
and other relations incorporating certain appropriate assumptions about the
flow around the meteor, and (3) points from the curve fitted to the meteor-
tracking data as input. The approximate analysis assumes one-dimensional
flow of the ablating vapor and constant average values of flow variables over
the meteor face and employs a shape factor to account for either a sphere or a
flat-face body. TFor gross results, such an approach is customary (ref. 3)
except that the shape factor was not needed before (see below). More complete
conservation equations than have been used previously are derived. These
equations and the derivation contain useful information not obtainable from
less complete statements of the conservation principles.

THE NATURE OF, AND CONDITIONS FOR OCCURRENCE OF, A BOUNDARY
SHOCK WAVE IN RAPID VAPORIZATION

A boundary shock wave is most easily understood as a region of
translational nonequilibrium in a molecular flow at a very high rate out of a
surface. (Adequate understanding of it therefore requires some background in
the basic concepts of modern kinetic theory, for which the reader is referred,
e.g., to refs. 5-T.)

Translational nonequilbrium in a molecular flow is manifested
macroscopically by the "transport processes" of viscosity and heat conduction.
Translational nonequilibrium is also induced by application of significant
viscous stress or heat conduction in, or at the boundaries of, any region of
gas flow. (The familiar fluid-dynamic boundary layer is a region of transla-
tional nonequilibrium induced by shear at a wall; the familiar gas-dynamic
shock wave can be thought of as a region of translational nonegquilibrium
induced by the diffusion or mixing, and subsequent rapid accommodation, of the
molecules of one equilibrium average state into a different equilibrium




average state, which necessarily entails heat conduction.) Sufficiently far
from any source of translational nonequilibrium, the gas flow relaxes to a
local-equilibrium state (or decays to an "inviscid flow"). "Sufficiently far
from any source . . . is equivalent to saying "for a sufficiently large
Reynolds number based on distance from the source” or to "for a sufficiently
large distance for diffusion of the transport phenomena' (cf. ref. 8,

especially pp. 21-23).

During vaporization at a very high rate, produced by absorption of
intense heat radiation and subsequent heat conduction back toward the liquid
in the vaporization region, it is expected that as the vaporization proceeds
to a sufficiently high rate, the associated heat conduction will become strong
enough to induce significant translational noneguilibrium in the vapor as it
leaves the molten surface. The translational nonequilibrium is induced
because of the lag in transferring energy from the molecular translational
degree of freedom normal to the surface to the lateral degrees of freedom of
the molecules. The lag occurs because of the spaces between the molecules as
they are separating in the phase-change region. From kinetic theory, this
lag, or difference, in the distribution of molecular energy in one direction
from that in another direction is understood as the essence of translational
nonequilibrium, including viscosity and heat conduction. This translational
nonequilibrium (viscosity and heat conduction) then requires a certain number
of collisions, and hence a certain time and distance of flow from the wall, to
"equilibrate," or to relax to a condition of flow in local translational
equilibrium (inviscid flow). The relaxation distance is the thickness of the

boundary shock wave.

From the Chapman-Enskog procedure of kinetic theory, it is found that a
gas Tlow in local translational equilibrium is governed by the Euler equations
of inviscid flow and that regions of flow not too far from local translational
equilibrium are adequately described by the Navier-Stokes equations of viscous
flow. It is known (e.g., ref. 9) that the structure of a sufficlently weak
shock wave (and of a downstream portion of a strong shock wave) is accurately
described by a solution of the Navier-Stokes equations.

In a boundary shock wave the viscous stress is compressive (rather than
shearing) as in a normal shock wave; and also, as in a shock wave, the viscous
dissipation is accompanied by heat conduction back through the gas flow. The
same equations govern the flow through a plane boundary shock (or through a
very thin curved boundary shock) as govern the flow through a shock wave.
Reference 1 used the Navier-Stokes formulation to obtain the conditions across
a boundary shock, which are represented by equations given below in the sub-
section "Equations for Ablation Process and Boundary Shock Wave." 1In a pri-
vate communication, Prof. He Schlichting has referred to the solution for the
boundary shock wave given in reference 1 as "a . . . generalization of the
known solution for the normal shock wave." It is a generalization in the
sense that a boundary at upstream infinity can be brought into the region of
the rapid transition; or alternatively, the limiting, or degenerate, case of
a boundary shock wave as the boundary moves upstream to infinity relative to
the rapid-transition region, or equivalently as the boundary shock "detaches"
from the wall (as the heat conduction vanishes in a supersonic efflux), is a
simple shock wave. From another point of view, a wall can simply be inserted
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at any point in a simple shock-structure solution; the values of the various

flow quantities at that point are then the boundary conditions, and the down-
stream portion of the original shock structure then represents the structure

of a possible boundary shock wave.

In reference 10, the necessary and sufficient conditions for a boundary
shock wave to occur were shown to be

(a) large Reynolds number based on conditions at the boundary of
the vapor, and

() significant heat conduction or viscous stress (significant
translational nonequilibrium) at the boundary.

More thorough discussion of boundary shock waves and the development of the
theory is contained in reference 10, including description of the asymptotic
treatment of the translational nonequilibrium flow, with emphasis on the
boundary conditions, and including discussion of the appropriateness of the
equations used in the approximate treatment of the phase change.

ANATYSTIS

General

A large meteoric body of the type that would experience a high rate of
vapor ablation while moving at very high speed through the earth's atmosphere
is shown in sketch (a).® If the observer were moving with the meteor, one
would expect the instantaneous flow pattern to be qualitatively as shown in
the sketch. (The curved lines, except the one indicated as the shock wave,
are streamlines.) The very high rate of vapor ablation is to @e expected for
a large high-speed stone meteor such as the OndYejov meteor P¥ibram (see
ref. 3).

2The meteoric body sketched is nearly spherical. Very large, very high-
speed meteors would be expected to have a nearly spherical shape because of
their high rates of ablation and their general rotational motion. Virtually
no spherical meteorites are found, however, for the following reasons:
Meteoric bodies that are either too small or too slew will not have experi-
enced the extreme ablation and hence will, in general, be irregular in shape
(see ref. 11). Nearly all (if not all) the fireballs that reach the earth
without vaporizing completely will have fragmented at some point of the
trajectory (ref. 11) and hence will also be irregular.
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Sketch (a).- Flow conliguration.

Although a detailed flow-Tield analysis is not made here, it is important
to understand the gqualitative structure of the flow. The following character-
istics of the structure should be noted (refer to both sketches (a) and (b)):
A stagnation point exists at point O, on the interface between the hot com-
pressed air and the vapor ablating from the meteor face. For large Reynolds
number pousde/Me (notation is defined in appendix A), the flow of hot com-
pressed air around the meteor is essentially inviscid except for the very thin
shock wave and a thin layer at the interface. For large Reynolds number,
pbubdi/pb, the flow of meteoric vapor is also essentially inviscid except for
the thin viscous region at the interface and the thin boundary-shock region
(see ref. 1). The three viscous regions - the shock wave, the interfacial
layer, and the boundary shock wave - may be treated as surfaces of discontinu-
ity of certain variables in the inviscid flow. It can be shown that only the
pressure is required to be continuous across the interTace (in the inviscid
limit). Hence, the pressure po 1is the stagnation pressure on the axial
streamline between point 2 and point e in sketch (b).

The high temperature air in the outer shock layer radiates heat to the
meteor surface at a high rate. The large energy flux to the surface produces
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Sketch (b).— Viscous and inviscid regions in flow near body axis.

the high rate of vapor ablation.® The hot air and vapor are arbitrarily

assumed to be transparent to radiation, and the radiation is assumed to be

SFor small or relatively slow meteors, heating by friction with the air
(convective heating) produces ablation of the meteor surface. In the case of
the fireball, at least in the major portion of the trajectory where the heat-
ing is most intense, the meteor is being heated not by friction with the air
but by heat radiation from the highly compressed air behind the shock wave.
Heating by friction, or convective heat transfer to the body, is almost non-
existent in this case, as will be seen later. However, an additional source
of heat conduction is considered here: the viscous dissipation associated
with the translational nonequilibrium in the thin region adjacent to the
liquid layer.



absorbed within a very short distance inside the liquid surface. Radiation
absorption by the vapor may be important. However,

(a) The radiation properties of the vapor are unknown; therefore, some
assumption must be made in order to study the qualitative features of the

flow;

() Neglect of the absorption by the vapor simply changes the magnitude
of the radiation absorbed at the liquid surface, which should not alter the
qualitative results unless the amount of radiation received by the body is
changed by orders of magnitude;

(¢) The vapor is at a much lower temperature than the hot air in the
outer layer, which tends to decrease the importance of absorption by the wvapor.

Since the meteoric-stone material has low thermal conductivity, only the
surface 1s at the vaporization temperature; it is assumed that vapor forms
only at the surface, and little or no bubble formation is expected to accom-
pany the "boiling off" of the vapor. In addition, the high viscosity of the
molten meteoric stone prevents the spraying of liquid drops along with the
efflux of vapor (ref. 12).

Allen (ref. 3) has pointed out that meteors of the type considered here
tend to be spherical, but may be somewhat flattened by ablation due to large
rates of radiative heating (see sketch (a)). Moreover, the present desire is
to obtain only gross effects; we therefore take advantage of the great simpli-
fication provided in the analysis by roughly approximating the flow as being
one -dimensional near the meteor surface. That is, we take constant values for
the variables over the meteor face and consider the area of the meteor face to
be equal to the cross-sectional area, nrba, for the purpose of computing drag
and heat transfer to the body. The flatter the face, the more nearly constant
are the variables, so the results would be most applicable to a flat-face body
of area nr.®. The application to a spherical body may be made in an gpproxi-
mate way by introducing a shape factor, as described in the next section. The
one-dimensional approach described above 1s equivalent to the approach used by
Allen and James (ref. 3), who obtained consistently good results in general.
However, Allen and James did not need to use the shape factor for the sphere,
since they assumed an effective drag coefficient equal to unity, which is
appropriate to a sphere, so that a shape factor was effectively "built in."

In the present analysis, the drag coefficient will be calculated rather than
assumed, so, as will be seen, the shape factor is needed here and its use
yields consistent results.

With this background, a procedure can now be formulated to calculate
approximately the effects of the boundary shock wave on the meteor flight
parameters. The altitude-density function, p, of reference 3 (see also
table I) will be used, where

o = Pgrp (1)

is the ambient density at altitude h and

8



Par, = 1.225%10~° gm/cm® (2)

is the ARDC standard atmosphere density at sea level (ref. 13). The density

ratio across a normal shock wave (needed in the calculations that follow) is

approximately equal to the ratio of the ambient-stream density to the stagna-
tion density behind the shock and, hence, is given for V > 7.5X105 cm/sec by
the approximate relation (cf. ref. 14, p. 50)

0.16
—0.039 v
P <;OZ cm/seé)

I

?
D|8'O

To compute the heat radiation incident on the meteor face, one needs to
know the volume of the outer shock layer. For a spherical nose at high hyper-
sonic Mach number, the ratio of the shock standoff distance to the sphere
radius is given approximately by Lighthill's solution (ref. 15). In the
present case, the air-vapor interface would be the equivalent body, so that,
assuming the interface to be nearly spherical (see sketch (a)), one can
approximate the outer standoff distance dy by a form equivalent to
Lighthill's solution. Using the definition

d —
D -1 (&)

Il

e
ry
where

rym Ty (5)
one can obtain D implicitly as the appropriate root of
A=3(L - %2 + 5(4k - 1)D% + 2(1 - k)(1 - 6K)D° = 0 (6)

For the radiation rate per unit volume of the outer shock layer, which we
denote as I, the relation given in reference 1k, approximately valid for
V > 13.7x10° cm/sec, is

5.05

T _ -5 —1.8 v
<l erg cm~3 sec‘;> = 6.4x107 5 <lO2 cm/seé) (7)

(Results obtained from use of this equation should be considered in the light
of the qualifications made by the authors of reference 14.) 1In view of the
discussion above, and with the assumption that one-half the radiation emitted
by the outer shock layer impinges on the body, we represent the total radia-
tive heating rate to a spherical body with a flattened face as

=

Qp = 5 w1y, “Id, (8)



and define the radiative-heat-transfer coefficient? as

Q Id
< = 5 33 (9)

(CH) o =
v/ ff l 3 2
5 0 Ve(ry,®)

Since do/rp 1s known from equations (4), (5), and (6), the value of
(CHr/rb)ff at any altitude for a flat-face body i1s found from

H#) T <d§> T —
P = 73 - )= v3 (D - l) (lO)
'y o o, b P

where V 1is to be obtained from the meteor data.

The effect of the forces (other than body forces) that produce the
changes in motion of the meteor may be represented parametrically by an effec-
tive drag coefficient (cf. ref. 3), defined by the relation

1 av ~
o VZ(nry®) = m -t f>

C —
Derr 2
(11)
- A .
= m,< at + g sin 8>
where the meteor mass m 1is approximately
N
m = = ry S (12)

3

and pp 1s the mass density of the meteor. (See table II for the physical
constants needed in this and other sections below. The value pp = 3.5 gm/cm
corresponds to the OndfejQV‘meteor Pribram (ref. 3) and is also nearly equal
to the value 3.4 used by Opik (ref. 12) for typical stone meteors.) From
equations (11) and (12), CDgpp/Tp 18 known:

CD o)
eff 8 m av .
o T 3 <— &+ e sin 9> (13)

(o]

3

In the calculation it is convenient to use the quantity

CH

T

wor, V()

- CDeff CDeff
Ty

(1)

Z

4The reflectivity of the wvaporizing surface material was disregarded
because 1t is not known.

10



where Cp,, for a body that does not have a flat face, is related to (CHr)ff'
That relationship will be considered later. An expression for pg, the
pressure outside the boundary shock wave, will also be needed. Note first
that the pressure at the stagnation point O is the stagnation pressure along
the line 2-O-e in sketch (b) and is given approximately by

Po = A VF (15)

Then the ratic of the pressure ©p, to the stagnation pressure is given in
terms of the Mach number outside the boundary shock wave, My, and the ratio of
specific heats in the wvapor, ¥ (assumed constant), as (e.g., ef. ref. 16,

P- 53)
P - -
< = <l + 7—2'—1- Me‘2>7 * (16)

Based on the general ideas and formulations developed in this section,
the equations needed to determine the flight parameters will be presented in
the following sections, which include a summary of the calculation procedure.

Shape Factor

If the one-dimensional analysis with constant variables on the meteor
face is used for flow near the meteor surface, the resulting equations are
most appropriate to a flat-face body unless an assumed value of CDeff
appropriate to a sphere is used, as done by Allen and James in reference 3.
When the wvalue of CDeff is not assumed, an appropriate shape factor must be

used, 1if the eguations are to be applied to a nearly spherical body, to insure
realistic results.

To derive a reasonably realistic shape factor, consider the following:
Suppose a sphere and a flat-face body have the same cross-sectional area, ﬂrg,

and that some variable V¥ on the surface has a constant value V¥, on the
flat face normal to the flow and varies as

¥ = ¥, cos™ o (17)

over the front half of the sphere, where ¢ 1s the angle between the axis,
cr stream direction, and a radial line of the sphere through a point on the
surface. Let ¥ be the integrated value of V¢ over the front surface area.
Then, for the flat face,

Yop = ﬁr2¢0 (18)

and, for the sphere,

11
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/2
- - n 2 s
Ysphere = k/ﬂ ¥ as = \/P ¥, cos™ ¢(2nr® sin ¢ do)
S o
/2
= ﬂTZWo ‘JF 2 cos™ ¢ sin o do F (19)
o

2

= o+ 1iff J

Suppose now one wants to compute the total radiative heat transfer to the
surface for a heat flux that varies approximately as Vg, cos™ @. The
radiative-heat-transfer coefficients would then be related by

2
(CHr)sphere Tn+ 1 (CHr)ff (202)

where (CHr)ff is given by equation (9) or (10). DNow let the radiative-heat-
transfer coefficlient to be calculated for the meteoric body be represented by

1
e = & (On) (200)

where sy 1s a shape factor for heat transfer. If, for example, the body is

a Sphere_and if the radiative heating rate varies as cos® ¢, for which n = 3
in equation (20a) (cf. fig. 9 of ref. 17), then sy = 2. Thus,

3

2 for sphere with qr/qro = cos” @

It

H (21a)

1 for flat-face body

Ii

SH

Similarly, suppose one wants to compute drag due to a force per unit ares
normal to the surface that varies approximately as Vg4 cos® ® (a reasonable
assumption; true for Newtonian flow). Then the force per unit area parallel
to the axis would be V¥ = ¥, cos® ¢. Using eqguation (19), one then finds the
drag of a sphere to be one-half the value on the flat face (since n = 3).
Thus, assume

1
CDerr = 5 (CDegs)re (22)
where the shape factor for drag, Sp, 1s
sp = 2 for sphere
(21b)
sp = 1 for flat-face body

12
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Further, for convenience and in view of equations (Qla) and (Elb), consider a
comnon shape factor for heat transfer and drag:

s = s = sp (21c)

An appropriate value for s may be determined as that value which causes
CDeff to be unity at high altitude. For the Pribram meteor,

s =2 (214)
gives this result.

The quantity Z 1in equation (1L) is now

1y (CHr
_ Ve, % \"b Jer

CDerr CDerg

(1)

Conservation Equations for Meteor Motion and Heating

Now consider an equivalent flat-face body with uniform values of flow
parameters over the meteor face, for which we want to write one-dimensional
flow conservation equations. The one-dimensional equations of conservation
of mass, momentum, and energy of the meteoric body can be developed in several
ways. One derivation is given in appendix B for conditions and assumptions
corresponding to the description in the above section. In appendix B the
conservation principles are combined into equations (B8a) and (B28) which may
be designated, respectively, as the momentum equation and the energy equation.
These may be written, neglecting pb/ps in comparison to unity, as

HE2DIN

-(ap + acp)pp = ooy, <Cab * %'“b2> ~ TpYy (2k)

]

Py T Py T Ty (23)

where Cab is given by equation (B16) as

Cab = ceol(Ty - Ty) + L + Cliq(Tb - Tp) + Ly (25)

where T, 1s the cold interior temperature of the meteor. The cross-
sectional area A in equation (23) is =nry®, in line with the sbove discus-
sion. The subscript b denotes the value of a quantity in the vapor flow at
the boundary, the molten surface of the meteor. The notation is defined in

13



appendix A, but we point out here for convenience that wuy 1is the vapor
velocity relative to the boundary surface, 7, the viscous compressive stress
at the boundary, and Qg the associated heat conduction at the boundary
(see ref. 1). (Some of the previous equations are discussed in appendix Bj;
further results are discussed in appendix C.)

To put these equations into a Torm that can be used in the present
calculation, we use the definitions (cf. egs. (9) and (11)):

av =~
—q_rA

Cidee ={ 7] »  (Odgerler = |73 (26)
5 p VA E'pwV A
Tf ff
It is also convenient to make the approximation
g = TU (27a)
and, in particular,
Eguations (27) are exactly true for
b1
~ B+ K)c
~ _ HCy 3 3 /)P
Pr = = = " =1 (28)

and are approximately true in general for 5; # 1 (see ref. 1), where p is
the shear-viscosity coefficient, Kk +the bulk viscosity coefficient, k the
coefficient of thermal conductivity in the wvapor, snd Cp the specific heat
at constant pressure in the vapor. DNote that if Pr = 1 and £ = 0, the
Prandtl number, ucp/k, is then 3/4. The vapor from a typical stone meteor
may be approximated for some purposes as a perfect diatomic gas (see ref. 1),
$0 that, in fact, Pr ~ 3/k and Pr ~ 1 for this case. Equations (23) and (24),
substituted into (26) with use of (27b), take the forms:

2
2pbu
b 1 1
(Cpgpe)es = 02 <l Tzt Chc> (29)
2op0° Lap | 1
(CHp) pp = o \m2 ' §> (30)
where
_qc VS
ne = T 25 = (Bs) Cno)er (31)
2 Pp
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(CH)pp = 77— (32)
Ha b %DOOVS
2
2 Yb
MpZ = 7ou /o (33)

and 7y 1s the ratio of specific heats in the wvapor, cp/cv. We may now obtain
a second expression for Z (ef. eq. (14)) by dividing VCH, from equation (30)
by Cppe from (29) and (20). For convenience in performing an iterative

calculation (to be described later), let us denote this expression by Z' and
use equation (33) and the perfect gas equation of state

P, = PRI (34)
to eliminate wuy, Pp, and O - The result is
Cap 1
[Tom (280 , L 2

VCHf

Z = 1 (39)

Derr 1+ M2 + 3 N3y,

which is to be set equal to Z 1in equation (14') (p.13 ) for the final
calculation.

Equations for Ablation Process and Boundary Shock Wave

Ablation process.- The temperature Ty, at which the vaporization
(boiling) takes place depends directly on the pressure to be overcome by the
molecules escaping from the liquid (e.g., ref. 18, p. 88) and also on any
significant final viscous stress (see appendix B of ref. 1); the mass flux, or
the rate of vapor ablation, depends directly on the number of liquid molecules
near the surface that have sufficient energy to escape the liquid and on
their velocities. The dependence of the temperature of wvaporization Ty, on
the total compressive stress, P, - Tp, for the phase transition at constant
temperature 1s taken to be supplied approximately by the modified Clapeyron's
equation (appendix B in ref. 1) in the form

Iﬂ( 11
- R \Trer Tp
%——Q=e (36a)

ref

For the model of typical meteoric stone used by ﬁpik (ref. 12), the mean
normal boiling point (boiling temperature at a pressure of 760 mm Hg, or
1.013x10® dynes/cm®) is 2960° K. This can be used as the reference point in
equation (36&), so that, using Ly and R from table II, we obtain the
following expression for T as a function of py:
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T 6, 500

X pb‘Tb>

26.13 - Iin 1 dyne/cme

The relation used by Opik (ref. 12, p. 24) to represent the vaporization

rate is

(pu), = —zl—pbvx (372)

where (1/2)7% is the average molecular-velocity component normal to the
surface in the +x direction. For meteoric stone (ref. 12, p. 161), this
reduces to

b Py 10 02
_ -2
<i ngcmfzséc'1> = 3.08x10 T dyne cm72> <~Tb > (370)

which, with use of equation (34), becomes simply
T 1/2
M = — = /B(ﬁ’ﬂb__)
J7RT, " Po

- R

where the constants from table II have been used.

and (38), Z' in equation (35) is determined in terms of p, and Ch,, which
are still unknown. Since M, 1is known and p. is known in terms of Mg
(eq. (16)), it is obvious that equations for the conditions across the bound-

ary shock wave (i.e., conditions relating Me, po, etc., to My, Py, s etc.)
and for Chc are needed. If we define the density ratic across the boundary

shock wave as

(39)

(40)
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ug,

Te _ y =1 2 2

=1+t 3 MpE(1 - <F) (41)
De Mbg
=g 2= 2
Py O M2 (12)

Ch, = 2 [a <} + 7&;;) - <1 + 7&;;>} (43)

Construction of Data Curve

To use the equations given above for calculating the meteor flight
parameters, one needs to know the values for wvelocity, V, and acceleration,
dV/dt, as well as g sin 6, at each altitude, h. One of the most difficult
problems of a study such as the present one is how best to use the meteor-
tracking data. The data for velocity versus altitude are given in table IIT
(taken from ref. k4, table 7). The data curve (fitted to the data points)
must give physically reasonable results. Least-squares fits (see ref. 3) have
giyen realistic results in the past except in the case of OndYejov meteor
P¥ibram, for which there was some difficulty. The shape of the curve fitted
to the data appears to be especially important in the upper part of the tra-
Jectory, where the accelerations are small. If one data point is signifi-
cantly in error or if some supposedly small factor is neglected, the results
can be affected significantly.

The view is taken here that the data curve must best fit the tracking
data and at the same time yield a physically possible result (in particular,
a nonincreasing radius). In constructing the data curves of h wversus V,
certain appropriate assumptions can be made that allow one to calculate
approximately the slopes near the top of the trajectory for different values
of an assumed initial radius, rp*. Then, using these slopes as guides, one
can graphically fit a curve to the data. This is, in effect, a combination of
fitting a curve graphically to the data and using "approximate isoclines" to
determine the shape of a portion of the curve. Of the resulting curves for
different 1%, that value is used for which the results are most consistent
along with the best apparent fit to the data.

The procedure for constructing the data curve is as follows: The data,
given in table ITI, are plotted in figures 1(a) through (f). Note from
table IIT that V does not change significantly, especially between, say,
h = 90 and 65 km. For this altitude range, assume V = V¥ = 20.87x10° cm/sec.
Also assume CDeff does not change much from unity and 1, does not change
much from its initial value, rb*, in this altitude range. These assumptions
will be justified by the calculated results. From reference 3, sin 6 = 0.6853.
Prom equation (13) we then have the approximate relation for the top part of
the trajectory (90 to 65 km altitude):
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Figure l.- Graphfcal fit to tracking data of
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<— %% + g sin é)
1 8 Pm 7

1 _8m , @y
rp* 3 Pgr SV*E
Using also
av . av
Frd -V sin @ ™ (45)
we then obtain for the approximate slope of the h, V curves:
av _ 1 /3 Psn  pv¥® ‘ h 4E
an " Ww\8 o, rtsine ©)° >SS T n = (46a)
or
av/dn . 399% _ -4 h
L sec = (ro%/1 om) L.70x107% , 65 < 7735 < 90 (46b)

with 5 (from table I) and various values of 1,¥*, approximate values of
dvV/dh were calculated from equation (L6b) and are listed in table IV. From
these values, slopes were drawn on parts (a) through (f) of figure 1. The
best curve was drawn through the points guided by these slopes. Since two
data points (data from two different cameras) are given for h = 76 km that
are very close, those points were assumed to be accurate. On the other hand,
the top data point (h = 88 km) was virtually ignored. It was impossible to
obtain realistic results using the top data point.® The data to be used as
input (V and dV/dt) were then obtained from figure 1 for each r* by meas-
uring the slopes and using equation (45). The values are listed in table V.

Calculation of Flight Parameters

For convenience, sketch (c) shows the overall scheme for calculating the
flight parameters.

Some parameters of interest that can be calculated, in addition to those
already defined, are: +the pressure drag coefficient,

Cp =T L 2 (47)
D s/2)p,V

“SNote that the data curve of Allen and James (ref. 3 for the same data)
also appears to disregard the top point. Note also that the two top data

points of table ITI were obtained with a camera different from that used to
obtain the remaining points.
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rﬂéteor—trackimg data: h versus V and dV/dt (curve graphically
fitted to the data); and sin @

Altitude-density function: 7 versus h

Approximations for: .
Shock density ratio, k
Shock standoff function, D
Radiation rate per unit volume of hot air layer, I

Stagnation pressure, g,

Isentropic relation between stagnation pressure, p,, and pressure
outside the boundary shock wave, P,

One-dimensional conservation equations for meteor motion and
heating, using the shape factor, s, for sphere

Vaporization equations and stone-meteor constants from 5pik's data

Equations for conditions across the boundary shock wave

| i
h 4

Output: Altitude versus py, Ty, Py, Up, pe/pb, pe/Pps Ta/Tps Mg,
CHI" CDeff" Ths Ches CHC’ CDp, CDVC, and CD‘t

Sketch (c).- Summary of calculation.

the drag coefficient due to the viscous-compressive stress,

-7y,

CDye = s(1/2)o, V2 ~ s(1/2)p V2 ~ su, | (48)

(1/2)p0, V2| suy

the contribution to the total CDeff due to the retrothrust of the vapor,

2
P
s(1/2)p V2 ~ CDerr - CDp - Dye (49)

CDt =

and the heat-transfer coefficients:

1!

CHe i_ (CHc)ff (50)

I

Cp = Cn, + Cm, (51)

In equations (M?) through (50), the shape factor has been used for consistency
with equations (20b) and (22).
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The detailed calculation procedure, including several simple auxiliary
expressions that need no comment, is outlined in appendix D. The calculations
were performed on an IBM 7094 electronic data processing machine.

RESULTS AND DISCUSSION

As outlined under "Construction of Data Curve," the initial meteor radius
is that value of the assumed initial radius, rp*, which gives the most consis-
tent results along with the best data fit. The data curves for wvarious . ¥
are given in figure 1, and the resulting curves for variations of 1rp with h
for the wvarious =% (calculated as outlined above and in appendix D) are
shown in figure 2. For mr,* less than 20 cm, the radius appeared to increase

90 B I \ \
20 25 35

lem

80 -

70

|
50I

60

L | | | i |
495 10 20 30 40 50

Figure 2.- Variation of meteor radius with altitude (s = 2).
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before decreasing. For
to be as good as for 20 cm.

results, so the remaining results given here correspond to
data, listed in table V(c), are taken from figure 1(c).)

rb* greater than 25 cm, the data fit does not appear
It appears that rp* = 20 cm gives the best

% = 20 cm. (The
Although the size of

the main body of the meteor, before its fragmentation at lower altitudes, is
very uncertain (see ref. L), it is believed that the radius computed here is

too low.

This reflects, certainly, the approximate nature of these calcula-

tions and, probably, inaccuracy and uncertainties in the original meteor data.
The results here would be improved if the shape factor, s, decreased from two

toward unity with decreasing altitude,

so that CDeff would increase; 1y

would then decrease more slowly and have a larger final value.

The results indicate that if the idealizations in this calculation are
approximately valid, then the rapid variations of flow variables and high heat
conduction characterizing a strong boundary shock wave were present in the

ablating vapor flow of the P¥ibram meteor.

(1) the heat-conduction parameter, Cp,

90r
80 \\
!
\ —
70 \’\_ ——
—
_h Chc - - \ \
Ikm i00
60| %
T 10% cm/sec
b
1000°K
50
(o)
L | | |
405 | 2 3 4

Temperature, velocity, heat - conduchon parometer

(a) Temperature, velocity, heat-conduction
parameter.

Pb
1078 gm/cm3

109 dynes/cm?
(b) ‘ |

I 10 102 103
Pressure, density

(b) Pressure, density.

Figure 3.- Vapor-flow variables at the meteor-
vapor boundary (rb* =20 cm, s = 2).
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This conclusion is indicated by:
(see fig. 3), is different from zero,
(2) the ratios of conditions across the
boundary shock wave (e.g., pe/pb; see
fig. L4) are greater than unity, and
(3) the vapor-flow Reynolds number,
ppupds /fp (where dy and i, were
estimated roughly; see appendix E), is
much greater than unity. (For alti-
tudes less than about 65 km, ppuypds /iy
is of order 10 or greater; see
appendix E.) The boundary shock wave
is considered to be strong because of
the large values of Cp, and pe/ey.
The calculated temperature change
across the boundary shock wave on the
P¥{bram meteor is small because the
vapor ablates at low subsonic Mach
number (Mp = 1/3) and because the den-
sity ratio across the boundary shock
wave is high (see eq. (L1)).

90 —

80T 1,/
r

YOP\
|

Figure k.- Conditions across the boundary shock
wvave on the meteor (rb* =20 cm, s = 2).



The wvalidity of the equations used for the boundary shock wave depends on
Rey = puyd; /il being large (3> 1). The results that depend on the boundary-
shock-wave theory are therefore not relisble much above 65 km altitude in
these calculations for the Pribram meteor. In the calculations below 65 km
altitude, for which Rep 1is large, the vapor flow necessarily divides into
thin viscous regions (the boundary shock wave and the interfacial layer) and
an essentially inviscid region (see sketch (b)).® All viscous effects,
including convective heat transfer, are absent from the inviscid region. Con-
vective heat transfer from the hot compressed air is therefore confined to a
thin layer at the interface; in the usual terminology of ablation theory, the
convective heating is completely '"blocked" from the body by the efflux of
vapor. The only heat transfer from the outer layer of hot air behind the
shock wave to reach the body is assumed to be that due to radiation. However,
there is significant heat conduction in the vapor at the surface (within the
thin boundary shock wave) that will be discussed below. Just as the boundary-
shock-wave theory is not applicable at the beginning of the entry into the
atmosphere, some point may be reached later where it is again not applicable.
A point may be reached where the radius r, has decreased to such an extent
that (1) Rey, 1is decreased significantly because it contains a length propor-
tional to r, and (2) the radiation is much lower for smaller r, S0 that
the mass flux ppuy contained in Rey, 1s also decreased significantly.
Hence, when the radius becomes small, the vapor flow near the body may again
approach a boundary-layer-type flow. This point in the trajectory of the
PY¥{bram meteor is below the lowest data point (see appendix E for values of
Rep), if it occurred at all. An additional effect of this phenomenon, when
the radius becomes small enough and/or the velocity slow enough so that the
ablation rate decreases considerably, is that the radius will decrease much
slower; that is, the curve of radius versus altitude will at some point again
become more nearly vertical in figure 2. This may be the effect beginning to
show up in the curve for rb* = 25 cm in figure 2.

The primary meteor flight parameters of interest are the radius (fig. 2),
the drag coefficients, and the heat-transfer coefficients (see figs. 5, 6,
and 7). The first important result regarding drag to be noticed in figure 5
is that CDeff remains, for all practical purposes, unity. (This depends, of

course, on the shape factor being constant at 2.) Note, then, that one could
ignore the boundary shock wave, assume CDeff = 1.0, and determine ry from
equation (13) (following the general procedure of Allen and James, ref. 3),
using the most appropriate data curve for V and dV/dt versus altitude. The
radius and Cp £ would then be known accurately, but not necessarily the
heat transfer (see below) or the thermodynamic properties of the wvapor. The
second result regarding drag is that the viscous-compressive stress (at the
vapor boundary) produces most of the effective drag, the thermodynamic

SNote that, even at 65 km altitude (taken to be the upper limit of
validity of the theory), where the meteor radius was about 20 cm (fig. 2) and
the thickness of the vapor layer was about 0.016 X 20 cm = 0.32 cm  (see
appendix E), the ratio of the boundary shock thickness to the entire vapor-
layer thickness (ratio of order l/Reb) was about 1/77, so the thickness of the
boundary shock wave was about 0.32 cm X 1/77 = 0.00415 cm.
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Figure 6.- Meteor heat-transfer coefficients
(rb* =20 cm, s = 2).

pressure drag being generally much
smaller and the retrothrust (repre-
sented by a '"drag coefficient," CDt)

practically negligible (see figs. 5
and 7). This result, that Cp,. 1is
the most significant portion of CDeff
can be misleading, however. If the
viscous-compressive stress were not
included in the analysis, the pressure
drag calculated would be much larger,
since Py would take the place of

p, + (-1) in the momentum equation

(eq. (23)).

The plot of the heat-transfer
coefficients due to radiation and heat
conduction in the wvapor at the boundary
(fig. 6) indicates that the heat

conduction in the boundary shock wave plays a substantial role (see also

fig. 7).

at the surface, it is useful to consider equation (2h).

have (see ref. 1):

qcb

so that, from equation (24),

_ L. =2
a4, = oy (b + 3 °)

oh

= TpYp

To aid in understanding the roles of radiation and heat conduction

Assuming Pr = 1, we

(52)




From equations (53), (B15), and (B16) (or egs. (74) in ref. 1), one sees that
the radiative flux to the body, -q,., contributes to: (1) neating the body
material to vaporization temperature (by conduction within the body), (2)
vaporizing the body material, and (3) increasing the kinetic energy of the
vaporized material [(1/2)u, ®]. TIncluded in the energy of vaporization is the
"flow energy," pb/pb = RT, added to the vaporized material. The latter term

[pbub(p-b/pb) = ubpb] is equivalent to the work required to blow off the vapor
against the pressure p, with velocity wuy,. This energy, added by work,
stays with the vapor as flow energy (giving the vapor an "enthalpy," e + p/p),
since the force due to the thermodynamic pressure p 1is not dissipative. Now
we see from equation (52), by analogy, that the contribution of the heat con-
duction back through the gas at the boundary, ~deyy s is in the form of the work
required to blow off the vapor against the viscous-compressive stress, -Ty,
with velocity wuy. Since the force due to -Tp, 18 dissipative, however, no
energy is added to the gas by this work, and it does not appear in

equation (53).

For the heating, then, although the wviscous effect (the heat conduction
in the boundary shock wave) is large, one sees (as in the case of drag) that
omitting the boundary shock wave from the analysis would not influence the
overall results as much as might at first be supposed. The heat conduction
simply balances the work of blgying off the wvapor against the viscous-
compressive stress (assuming Pr = 1).

Although detailed flow calculations would be affected significantly by
the boundary shock wave, an important result here is that, for overall gross
effects, ignoring the boundary shock wave and assuming CDeff to be unity and
the heat load producing the vaporization to be Just the radiation from the hot
gas, one should obtain good approximate results. The only difficulty remain-
ing in ignoring the boundary shock wave is in determining the ablation temper-
ature, which also determines Cab' However, since the largest part of gab

1s comprised of the heat of wvaporization, Cab 18 not too strongly dependent
on the wvaporization temperature. The approximate equations used by Allen and
James (ref. 3) therefore give good approximate results for the overall motion
and heating of a meteor (especially since their assumed values of Cab and Ty
are approximately correct for the most critical part of the trajectory), even
though the boundary shock wave has not previously been considered. The most
important conclusion here is that detailed flow calculations, both for
determining the flow characteristics and for computing more precise results on
the motion and heating of the meteoric body, should consider the possible
effects of the boundary shock wave. In the case of the Pf{bram.meteor, the
boundary shock effects on the flow are indicated by the idealized theory to be
substantial.

CONCLUDING REMARKS

The results of including a boundary shock wave in a simplified
calculation of the flight parameters of a stone-meteoric fireball have been
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studied using meteor-tracking data for the analysis. The results found or
deduced are enumerated explicitly, and then elabcorated upon, in summary of the

above discussion. They include:

(a) the calculated values of ratios (which represent the "jumps" or
rapid variations) of vapor-flow parameters across the boundary
shock wave, and values of other parameters in the vapor that
relate to the boundary shock wave;

(b) qualitative differences in values of the vapor-flow parameters
from values that would be obtained by ignoring the possible
presence of the boundary shock wave (these differences can be
inferred from the results (a), but were also checked in a simple
calculation, not shown);

(c) the significance of (a) and (b) to the vapor flow field;

(d) the calculated values of the flight parameters, including the
meteor radius and the various heat-transfer coefficients and

drag coefficients;

(e) qualitative differences in the calculated values of the overall
flight parameters from values that would be obtained by ignoring
the possible presence of the boundary shock wave; and

(f) significance of the above results (of including the boundary
shock wave in the present calculation of meteor flight parameters)
to more detailed analyses of the flight parameters.

The calculations indicate that, if the idealizations made are valid,
conditions were present in the ablating-vapor flow of the OndPejov meteor
Pr{bram for a strong boundary shock to occur according to the boundary-shock-
wave theory presented previously.

During the portion of the Pf{bram meteor trajectory for which tracking
data were obtained and for which the boundary-shock-wave theory is presumed to
apply (between about 65 and 45 km altitude) the results are: (1) neither the
pressure ratio nor the density ratio across the boundary shock wave was ever
less than about 4.5, (2) the temperature change was about 2 percent across the
boundary shock, (3) the viscous-compressive drag was always at least 75 per-
cent of the total effective drag, (L) the total effective drag coefficient
remained nearly constant at the value unity, and (5) heat transfer by conduc-
tion at the surface in the vapor was always at least 20 percent as large as
the radiative heat transfer.

Since the density a short distance from the molten surface, pg, is
significantly different from py, which in turn is fairly close to the density
that would be calculated by ignoring the possible presence of a boundary shock
(or equivalently by omitting the translational-nonequilibrium condition on the
vaporization rate), the calculated effects on the vapor flow are substantial.
Therefore a more detailed analysis of the flight parameters that would use a
detailed flow field analysis (for more precise calculation or for other
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reasons) should include consideration of a boundary shock wave, under the
conditions where its presence in significant strength is expected.

The results of the analysis including the boundary shock wave indicate an
initial radius between 20 and 25 cm, probably closer to 20 cm, for the meteor.
The actual initial radius is believed to have been somewhat larger than this.
The difference is probably due to the approximations made in the analysis and
to uncertainties in the original meteor data.

If the boundary shock wave were not considered in calculating the overall
gross flight parameters (so that virtually all of the heating would be assumed
to be by radiation and most of the drag due to pressure), it is still possible
to obtain realistic approximate results for the overall motion and heating of
the meteoric body by judicious choice of: (1) assumed values of the effective
drag coefficient (CDgorp), the temperature of vaporization (Tp), and the total
energy required to heat and vaporize a unit mass of the meteoric material
(gab% (as used effectively by Allen and James) and (2) a suitable curve
representing the meteor-tracking data. Thus, although the occurrence of a
boundary shock wave may be important to the flow details, the overall flight
characteristics of the meteor (in the class expected to have a boundary shock)
are not too significantly affected by the presence of a boundary shock wave
if proper estimates are made, as done by Allen and James.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 31, 1967
12k-07-02-23-00-21
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APPENDIX A
PRINCIPAL NOTATION

cross~-sectional area of the body
effective drag coefficient; equations (11), (22), and (26)
coefficient of drag due to pressure, equation (47)

contribution to total Cp due to retrothrust of wvapor
- ef'f ?
equation (49)

coefficient of drag due to viscous compressive stress,
equation (U48)

coefficient of heat transfer by conduction, equations (32)
and (50)

conduction coefficient defined by equation (31)

coefficient of heat transfer by radiation; equations (9), (20b),
and (26)

specific heat

specific heats in gas (vapor) at constant pressure and constant
volume

shock standoff function defined by equation (h)
distance from body to interface between vapor and air

distance from interface to shock wawve, that is, thickness of
outer shock layer

differential quantities first used in equation (B1O)
differential quantities defined prior to equation (B1)
specific internal energy

total force per unit area acting on an elemental surface

body force per unit mass acting in the direction of motion;
f=gsin o when ¢ = gh

acceleration of gravity




K1,K2

Kl' 2 KZ'

Pr

Pr

Qp

altitude above the earth's surface
rate of energy radiation per unit volume in the outer shock layer
constants defined by equations (C5) or (C6)

constants of integration first used in equations (C9) and
evaluated in (C1l) or (C12)

thermal conductivity

shock density ratio, gm/pz

latent heat of fusion

latent heat for vaporization at low rate

Mach number

mass of meteor

portion of body mass between xg and x = 0 at a given time
molecular weight of vapor

Ppressure

Prandtl number, pep/k

Prandtl number based on [, ficp/k

total radiative heating rate to a flat-face body

heat flux (positive to the left in sketches (a) and (b), positive
to the right in sketches (d) and (e))

conduction heat flux

radiative heat flux

gas constant (universal gas constant divided by molecular weight)
vapor-sblation Reynolds number, ppupdi/by

body radius, sketch (a)

assumed initial radius of meteor

distance from center of nearly spherical body to vapor-air
interface, sketch (a)

shape factor, equations (21)
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temperature
time

velocity of vapor relative to molten meteor surface (to the right in
sketch (d))

magnitude of meteor velocity relative to the earth
approximate value of meteor velocity at atmosphere entry

velocity of wvapor at the molten surface relative to the body mass
whose velocity is V; uy - Ug

coordinate in the direction of the body motion whose origin is fixed
at the receding molten surface, sketch (d)

coordinate in the direction of the body motion whose origin is fixed
in space

VCy
L , equations (14) and (35)

CDeff

i) , equation (39)
Pe

constants defined by equations (ClL)
‘p
Cvr

ratio of specific heats,

ep - ea + RTy, equations (Bl5) and (B16)

angle between velocity vector and equipotential surface (e.g.,
earth's surface when ¢ = gh)

function of ¥ and D, equation (6)
shear-viscosity coefficient

defined in equation (28)

mass density per unit volume

mass density of meteor

atwmospheric density at sea level, equation (2)

altitude-density function, equation (1)




i

f

lig

ref

sol

zZ -zt

viscous compressive stress

body-force potentials for gravitational force ¢ = gh, equation (BU4b)
variable quantity on meteor surface, equation (17)

constant value of V on a flat-face body

Subscripts
in general, an arbitrary point in x < O; in particular, value where
k %EWE 0, that is, where T, 1s the cold interior temperature
value at the boundary in the vapor (x = O+)
value outside the boundary shock wave in the wvapor
value at fusion, that is, where T = T¢, the fusion temperature
value on flat-face body
value in the liquid (molten meteoric material)
value at the stagnation point, on the air-vapor interface
arbitrary reference value
value at the molten surface, inside the surface (x = 07)
value in the solid meteoric material

value behind the shock wave, sketch (b)

condition in the ambient atmosphere at altitude h
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APPENDIX B
DERIVATION COF THE ONE-DIMENSIONAL CONSERVATION EQUATIONS

A derivation of the equations of conservation of mass, momentum, and
energy 1s presented for an accelerating body with the following conditions: A
rapid efflux of wvapor from the forward face of the body is produced by vapor-
ization of the body material due to absorption at the body surface of intense
radiation. All motion, including that of the body and the wvapor, is assumed
to be one-dimensional. The body has a cross-sectional area A and an
instantaneous mass m. The gas in front of the body is the outflowing vapor.
The effects of any gas to the rear are neglected. The body is moving in a
force field of potential ¢. (In the case of gravitational force, ¢ = gh.)

For the following development, refer to sketch (d), where all motion is
to the right. Let

vV = V(t) be the instantaneous velocity of the body;

X be a coordinate in the direction of the body motion whose
origin is always fixed at the receding surface;

x! be a coordinate in the direction of the body motion whose
origin is fixed in space (e.g., with respect to the earth's
surface) ;

ug = ug (t) be the rate at which the surface is receding into the body mass,
that 1s, the velocity in the -x direction of the surface
relative to the internal mass of the body. (Thus, the
absolute velocity of the surface is V - ug.);

Uy, = up () be the velocity of the gas (vapor) at the surface relative to
the surface. (The absolute instantaneocus velocity of the gas

at the surface is w, - ug + V.); and

u = u(x,t) be the instantaneous velocity of the gas to the right relative
to the surface at a distance x from the surface. (The
absolute velocity of the gas at x,t is u - ug + V.).

Note that, relative to the x coordinate, the surface is stationary, the mass
inside the body is moving with wvelocity wug, the gas is moving with velocity
u, and the surface value is uy. (Relative to the x! coordinate, the body
has wvelocity V = dx’/dt.) (Subscript b refers to values in the gas at the
boundary of the gas flow (X = O+); subscript s refers to values inside the
unvaporized material at the surface (X = 07); subscript a refers to an
arbitrary point a inside the surface (x < 0).)

Consider the motion of the system of constant mass m during the
infinitesimal time interval dt Dbetween t, and t, + dt, where m is the
portion of the body mass m between xg and x = 0 at time +tg. The mass
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Time t = t,:

a
| ‘ s/ b
| e
V.
fa <—_‘ I V —> Siress fy
m + dm -dm
| ‘ 7 — Gas velocity up ~ug + V
| | Ps A eb
N — —;
RN
Solid and hiquid mass
m with velociy V A
M with velocay , _/ —

Surface x = O moving
with velocity V - ug

Time t = 1, +dt

a

of
=~ Swess fp * dip + 50 dn

Py 7 Pp + dpy,

—3 Gas velocity up —ug + V +
dlup - ug+ V)

—= Velocily up ~ug+V
+dlup-ug+WV)
du
. ~ — + ﬁdn
So' d and -quid mass Mm*+dm
w th yewocify V + gV

I
|
|
fa+di°<-——{ 7
l ~
|
l
|

I3
—

s - —
Surfoce x = 0 mowing with
velocity V-ug + d(V-ug)

Sketch (d).— Ablation of surface during time interval dt.

vaporized during dt is -dm. (Although -dm is lost from the "body" during
dt, it remains part of our "closed," or constant mass, system.) Let dE be
the dimension of the mass -dm before it is vaporized and dn its dimension
after it is vaporized; thus,

-dm = p A dE = p A dn (B
where, by definition,
- d& = dn
Us Tt Y T g (B

1)

2)
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From equations (Bl) and (B2) we have a convenient statement of conservation of
mass:

dm
i Ap ug = Appuy, (B3)

In the following an appropriate "momentum equation"” is derived from the
principle of conservation of momentum. First, define f +to be the sum of
"surface forces" per unit area (such as pressure and viscous stress in the gas

or liquid, and tensile or compressive stress in the solid). Positive values of
f 1indicate tension, so that, in the gas or liquid,

f=-p+T (BlLa)
where p 1is the thermodynamic pressure and T the viscous-compressive stress
(tr = A(du/dx); see, e.g., ref. 16, p. 331, or ref. 1). Also, define f +to be
the body force per unit mass acting on the mass M in the direction of the

body motion, that is,
> d
= -2 (Blb)

(In the case where the potential is o = gh,

f =g sin @
where
ing= -3 _ _dh
SO = 73t T Ty at

i.e., where 0 1is the angle between the trajectory of the body motion and an
equipotential surface, such as the earth's surface.) The average external
force to the right (sketch (d)) acting on the mass m during dt is then

oL of
mt + 5 A [(fb - £) + (fb +afy, + 5° dﬂ> - (fy + dfa)J
= fmf + A(f, - £5) + higher order terms

so that the impulse during dt 1is
mf dt + A(fy, - £5)dt (B5)

The momentum change (to the right) of the mass m during dt is

(m + am)(V + av) + (—dm)[ub -ug + V+ adluy, -ug + V) + %—%%—dn} - mv

= mdV - (w, - ug)dm + higher order terms (B6)

34



Neglecting the higher order differentials, we may then write, from the
principle of conservation of momentum,

A(fy, - £,)dt + mfdt = mav - (w, - ug)dm (BTa)

Convenient forms for this equation are

fav o\ L 1 dm
"y dt-—f>—fa fy + (up - ug < Adt> (B7D)
and, with use of equation (B3),
mav m
osus2-<fa+xa'zf>=obub2-fb (B7e)

If we take point a as the back surface of the body, where f, = 0 and m = m,
we have, using equations (B3) and (BL4) in (B7b),

R R G EE SR (58e)

in which, of course, pb/pS << 1 and may be neglected. Another convenient
form for eguation (B8a) is

av =
-m <d—t - f> = Dy + Dye + Frp (B8b)

where the pressure drag, the viscous-compressive drag, and the retrothrust due
to ejected vapor are, respectively,

Dp = pbA
Dvc = -T-bA
> (B9)
dm dm
Fr=-g (4 ~us) = - F W

i

2 Po 2
where Vi, = Uy - Ug is the gas velocity relative to the body mass whose
velocity is V.

To derive an equation representing conservation of energy, we begin with

the first law of thermodynamics applied to the closed system of mass m
during dt (see above definitions and sketch (d)):
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dE = dH + daw (B10)
where
dE = the change in energy of the system of mass m during dt
dH = the net heat added to the system of mass m during dt

aw the work done on the system of mass m by external forces during dt

The energy E possessed by the mass m 1is composed of internal energy,
kinetic energy, and potential energy. Let e denote internal energy per unit
mass at a certain point in the mass m at time t = t, and e + de be the
corresponding value at time 1T, + dt. Also, denote the latent heat of fusion
and latent heat of vaporization at low rates (see appendix B of ref. 1) by
Ly and Ly, respectively. Refer to sketch (e). During dt the surface, x =0,

o '
s{b s|b

x=x, at X= fot x=0 at x=0 at
t=to+ dt t=to 1=ty + dt t=tg
Sketch (e).— Change of specific-internal-energy distribution in body during time interval dt.

where the vaporization is taking place, recedes from s to s', a distance d¢
relative to the internal body mass. For simplicity, changes in eg and ey
with time are neglected, that is, egr =~ €5 and ept =~ ep. Then, during dt,
the internal energy curve i1s simply shifted a distance dE to the left in
sketch (e). Neglecting higher order differentials, one finds the shaded area
to be

(es - ea) dg

Since the mass included between point a and point s' is m + dm, the
change in internal energy of the mass m + dm during 4t is

pAleg - e )ae = -dm(es - eg) (B11)

Note that this takes into account a phase change (fusion) at x = Xf wWhere
the fusion temperature is Ty; thus, 1f the specific heats in the solid and
liquid are constants cg,7 and cjig, one may write
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eg ~ €5 = Cgo1(Tp - Tg) + Lp + cy34(Tg - T¢) (B12)

At t = t_., the mass (-dm) has an internal energy of

(e

and at t = t, + dt the mass (-dam) has an internal energy of

[eXs

I\)Ii—‘

aﬁ- §> + higher order terms

1 de -
-dm { ey + 5 3% dn ) + higher order terms

so that, with neglect of higher order differentials, the change in internal
energy of the mass (-dm) is

-dm(ey, - eg) (B13)

Thus, from equations (B1l) and (B13), the total change in internal energy of
the mass m during 4t is

-am(§, - RT (B1k)

)
where

Cep = RIp~ ep - &g (B15)
(see appendix B of ref. 1). For constant specific heat in the solid, liquid,

and constant-temperature phase changes (e.g., see ref. 19), if point a is
to the left of the fusion point, then

Ceb = Coo1lTe - Tg) + L + cp54(Ty - Tp) + Ly (x5 < xp) (B16)
In sketch (d), the kinetic energy of m at to 1is (1/2)fvZ. At time
to + dt the kinetic energy of the mass = (fi + dm) + (-dam) is

2
L (i + am) (v + dv>2+§<—dm>[<ub g ) vl -+ )+ 2B a }

Therefore, the total change in kinetic energy of the mass m during dt
(omitting higher order differentials) is

myv av + (—dm)[’v’(ub - ug) + % (ub - ugfi\ (B17)

From expressions (B1lL), (Bl7), and the expression for the potential-energy
change:
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we then have
dE = ﬁV'dV+-(-dm)[§ab - RTy, + %-(ub - uS)2 + V(up - us)} - BVE at (B18)

The net heat added to the system of mass m during dt is
dH = (q - ap)A dt (B19)

where q denotes heat flux to the right in sketch (d) and where

qy = -(k ar/ax),
(B20)
%, = Ay + 9o = @ - (k dT/ax)y
and -q is the radiative heat from the right that is absorbed at = 0 and

X
dey the heat flux by conduction in the vapor at the boundary (x = 0%)

The work done on the system of mass m during d4dt by the gas in front
of it is the product of the average force during dt on the forward bounding
surface times the distance through which that surface 1s moved. From
sketch (d) one finds that the forward bounding surface of the mass W moves,
during dt, from b to ¢, an actual distance of

(w, - ug + V)at + higher order terms
Thus, the work done on @I during dt by the gas in front is
fyA(u, - ug + V)dt + higher order terms (B21)
Similarly, the work done on m during dt by the mass behind n is

. -f AV dt + higher order terms (B22)

and the total work done on mass m during dt, with neglect of the higher
order terms, is then

aW = (£, - £5)AVdt+ fb(ub - ug)A dt (B23)

The first law of thermodynamics, equation (BlO), written in the form

dgH dE aW (521)

and with use of the expressions (B18), (B19), and (B23), gives an equation
expressing conservation of energy:

38



>|gz

9, "~ 9 = <}—-— f) - %-%% [Cab - RTy, + %-(ub - us)2 + V(ub - us)}

-+

(fa - £ )V - fluy, - ug) (B25)
Substitution of the momentum equation (B7b) into (B25) yields
1 dm 1 2
da - % = - 3t [gab - RT, + 5-(ub - ug) J - fb(ub - ug) (B26)

Another useful form obtainable from equation (B25) with substitution of (B3),
(B7c), and (B15) is

i=Ri=t]
&2
I
=13
H
NS

L 3 - L 3
pbubeb + > Pyl + A - ubfb = pgligey, + 5 pPUg + dg- ug <%a +

If we now take point a far enough back from the body surface that qg 1is
negligible and T4 1s the cold interior temperature, using equations (B3)
and (BL), we may wrlte (B26) in the following two convenient forms:

2 .
-(aq, + qu) = ppUy [gab - RTy, + %'uba <1 - §9> ] + (py, - T ) Uy, (l - gé>
s s

(B28)
where, as in equation (B8a pb/ps << 1 and may be neglected; or
dH am 1L =
&= aE-(gab - RTy, + 5 Wy > + (Dp + Dyl vy (B29)

where dH/dt = - A = -(ay + qcb)A; v, = U, - Ug, the gas velocity relative to
the body mass whose velocity is V; Dp and Dy are given by equation (39),
dm/dt is given by equation (B3); and (., 1s given by equation (B16), with
T4 as the cold interior temperature.

Following is an interpretation of equation (B29): The effects of the
heat transfer dH during the time interval dt are: (a) to add internal
energy to vaporize the mass (-dm) and raise the temperature of an equivalent
mass to the level that (-dm) had before being vaporized (this accounts for the
term -dm({,, - RTy); (b) to add kinetic energy to (-dm) relative to its
original motion Kl/2) dm)v 2]; and (c¢) to blow off vapor with force (Dp + Dvye)

acting through distance vbdt relative to the body motion [(Dp + Dye)vp dt].
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In this derivation of the equations of motion and heating, note
specifically that the following are accounted for:

(1) neat transfer into the body, as well as heat transfer used to
vaporize the surface material;

(2) work done to blow off vapor, as well as the kinetic, potential, and
internal energy possessed by the outflowing wvapor;

(3) recession of the ablating surface;

(L) drag due to the viscous compressive stress, as well as pressure drag,
retrothrust of ejected wvapor, and the gravitational force;

(5) heat conduction associated with the viscous stress, as well ac
radiative heating.

Lo



APPENDIX C
ADDITTIONAL RESULTS FROM CONSERVATION EQUATIONS

In addition to the conservation equations themselves, some interesting
and useful side results can be obtained from the above derivation of the con-
servation eguations. The energy equation presented above, in its complete
form, can be used to calculate the heat transfer and the temperature distribu-
tion in the body, including the depth of the layer of molten stone and the
depth at which the solid stone receives significant heating.

For this purpose, equation (B26) may be written (neglecting pb/pS in
comparison to unity) as

- %ﬁﬂs = Qo T Ay TRy, <Cab - RTy, + %-ubé> + (pb - Ty (c1)
a

in which point a 1s arbitrary, so that

bab = csol(Te = Tg) + Lp + c14q(Ty - Tp) + Ly, (x4 < x¢)
(c2)
Cap = cliq(T'b - Tg) + Iy, (Xf <xg <0)
Then equation (Cl) becomes
(ar/ax) - g, (T - K1) =0,  (x <xp) (C32)
(ar/ax) - (T - K2) = 0 , (xp <x <0) (C3p)
where
_ Po™pCsol _ PpUp©lig
By =~ . s By = (cu)
sol lig
B.X, = L + + T Lo + C (T, - Tp)
1717 koy ey, * A T PRUb | Cgolty toRF 1ig\+p f
+ L, - RL, + 2 w2| + (o - ™) (C5a)
v b T 2% Py 7 Ty Sa

R -
BK, = kliq.{écb + 4y + PpUp [Cliqu + Ly - RTy + 5 Uy } + (pb - Tb)ub}' (C5b)
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Much simpler expressions for K and Ko than equations (C5) can be

“obtained as follows: Take point a far enough back from the surface so that

q is small and T, 1is the cold interior temperature. Then, as x =

1g
T ~ Ty and dT/dx = 0; K; is found (from eq. (C3a)) to be

Further, equations (CL) through (C6a) can be combined to give

Kgo1 Ba PbUb
= = - —— [(c - ¢11q)Tf + Lel
2 kliq Bo L B2kliq [( sol llq) f i
Cs0l L
- Tf - Cllq_ (Tf - Ta) - Cliq

The boundary condition for equation (C3b) is
X'—'—-‘O, T=T'b

Since Ty 1s known, the location xp will be determined by solving
equation (C3b) for the condition

X = Xf , T="T¢
The boundary condition for equation (C3a) is then
X = Xp o, T =Tp
The solutions to equations (C3a) and (C3b) are

Pyx

T Kl + Kl’e s (X S Xf)

I

Box

T = Ko + Ko'e 5 (xp <x <0)

11

Substitution of the boundary conditions gives

Tb = Ko +K2'

X
Kg + Kz‘eBg £

H
Y
]

X
= Kl + Kl'eBl £

=
)
!

from which the expressions for Ks', Ki', and xr are obtained:

Lo

-0

2

(c6a)

(céb)

(c8a)

(c8p)

(C9a)

(Cob)

(c10)



Kg' = T'b - K2 h
1 Tr -~ Ko
= — 1 = = Cl1l
xf Bo og <Tb ~ K2> ? ( )
Tr - Ko -B1/Bz
Kt = (¢ - Ka) ([ g,
J

Note also that

-Bixe

Kl' (Tf - Kl)e

|

o Boxp (c12)

i

(Tf - Kg)e

and that the distribution (C9) can be written conveniently as:

%E:——é— = Palexe) < xr)
- 1

(c13)
I -Ko eBz(X‘Xf)

Tf—KZ— ] (XfSXSO)

where

KlzTa

Csol Lr

Clig

o
Il

Te - (T - Ty) ? (c1y)

Cligq

|

xp = £ log ?f__K_e>

£ By Ty - Ko

J

and where (; and Bo are given by equations (ch). Thus, the temperature
distribution in the body is determined (egs. (C13)), as well as the depth of
the molten layer, -xr (egqs. (C1L)). The depth of the solid stone material
recelving significant heating can be observed from the temperature distribu-
tion, or one can calculate the depth at which the temperature is, say, 1 per-
cent higher than the cold interior temperature. 1If one calls this depth -x.
and the temperature To, the first of equations (013) gives

Te - K1 - eBl(Xc~Xf)
Ty - K1

from which
1 Te - K1
X, = Xp F By log <§f - K;) (c15)
where, for example, T. = 1.0l T,.
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To compute the temperature distributions, one needs to know values for
kgol and kjjig, in addition to the constants listed in table II. Opik gives a
value for thermal conductivity of meteoric stone as 2x10° erg/cm sec OK
(ref. 12, p. 162). We take this to be
kgol = 2¢X10° erg/cm sec °x
In general, the ratio kliq/ksol is about one-half for a material at fusion.
Therefore, we assume

kyiq = 1X10° erg/em sec 9K

We find: K-q

200° K, Ko = 257° K, B1/ppuy, = Lh.75 cm sec/gm, and
Ba/B1 = 2.46.

For the P¥ibram meteor, the depth of the molten layer and the
depth for 1 percent temperature rise are shown in figure 8. The interior
temperature distribution at 55 km altitude is shown in figure 9. The calcula-
tions show that the depths of significant heating in the meteoric body are

very small.
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- = 2).

s

il

02 .04
-X

lem

Representative interior temperature

distribution (55 km altitude, r,* = 20 cm,



APPENDIX D
CALCULATION PROCEDURE

The flight parameters are calculated as follows:
1. ©Specify as input:

Tables of altitude and flight data: g sin 8 and h vs.p
(table I); h vs. V and dv/dt (table V(c) for rp* = 20 cm)

Constants: pgp (eq. (2)); My (eq. (38)); s (eq. (214d)); Pms Csols
c1ig> Tas Tf, L, Ly, R, and y (table II)

2. OSpecify altitude h
3. Compute shock density ratio k = pw/pz (eq. (3))

L. Compute 5-(function of radius and standoff giszances; see eq. (h))
by using trial values for D and iterating until A(k, D) = 0 (eq. (6))

5. Compute:

Pw = Pgr, p = ambient density at altitude h
(eq. (1))

P, = p V2 ~ stagnation pressure (eq. (15))

I = I(5, V) = outer shock-layer radiation rate
per unit volume behind normal shock (eq. (7))

() o) o
b Jere

p Vo

Cp (-av/at + g sin @)
eff 8 Pm g
I,_b - 3 poovg (GQ- (13))
CH
2v(5D),
7 = —~ 2 7tf (eq. (141))
CDerr

T
6. Determine Mg and other quantities by using trial values of M, and

iterating until o =2 - Z' = 0, where the following quantities must be
computed for each trial value of Mg:
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Le

7.

Pe = P 0y Mo, 7) (eg. (16))

a = @(Me: Mb: 7) (GQ- (40))

pe/P, = L/a (eq.

(39))

Te/T, = function of 7, My, o (eq. (L1))

Pe/Py = aMpZ/MZ (eq. (h2))

Ch, = function of a, 7, My, M, (eq. (23))

— pe
P = Pe/Pp

Tb = Tb(pb) (GQ- (36b))

Cap = Cso1(Te

VAR Zf(7: RJ

o=2 - 7!

Then compute:

o
I

&
1

Q
s
=
I

Cerr

(CH) pp =

- Tg) + Lr + c13q(Ty - Te) + L, (eq. (25))

Tb; Mﬁ) gab; Chc) (eq' (35))

= p, /RTy, (eq. (3%4))

2opup” /Cap 1
e we t 2 (eq. (30))

1
E'(CHr>ff

(CHp) pp

Derr
n, )b
0 3
b
Cne g (23 (31)



CHc

I

I

T (Cmy)pp (ea. (50))

- (ea. (7))
2 Pl
V(CH.)

o (ea. ()

CDeff - CDp - CDVC (eq.‘ (J‘l'9))
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APPENDIX E
ESTIMATION OF THE VAPOR-ABLATION REYNOLDS NUMBER

The validity of the equations for the boundary shock wave (ref. 1)
depends on the vapor-ablation Reynolds number

U, d.
Re, = il (E1)
M
being large (>> 1). The quantities and uy, are evaluated from calcula-

tions presented in the text. To obtain a rough estimation of Rep, in order
to determine rough limits on the applicability of the theory, one must
estimate di and fiy.

The shear viscosity, M, to which @ is related by

W=
W=

can be estimated using approximate equations from kinetic theory (e.g., see
Vincenti and Kruger, ref. T7)e TLet »7 be the molecular weight of the vapor
and consider the wvapor to be composed of fictitious identical molecules of
diameter d. Let P be the mass density per unit volume of the liguid state
of the vapor whose molecular weight is#7. Then, denoting Avogadro's number
by £, where

_ 29 molecules
£ = 6.023x10 T ols

we may write for the approximate volume occupied by each molecule in the
liquid state

a® = & (E3)

(Ek)

where

&
w
s
5
=l
N

c

Substitution of equations (E3) and (E5) into (EL) gives the approximate
relation
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0,L
FEOE ()
Now if one assumes
Py~ Py (E7)

and takes values for R,#, and Py from table II, one obtains

N -4 (T
1 gm cm~t gecl 0.253%10 <l° %) (28)

For convenience, one may assume the bulk viscosity & 1o be zero, so that
(from eq. (E2))

=

go= (E9)

W

Then, with the result from equation (38) that

u, = 0.333 J/7RTy (E10)
equation (E1) with (E8) and (E9) becomes
_Pe%dy 107 L RAYAN
Rep = P, = 0.498 <l gm cm” > Ql c%> <fg> (E11)

The estimation of di/rb lies outside the scope of this report. It has
been computed from an approximate relationship for which the derivation is
rather involved. (The flow field around a sphere with large mass transfer was
analyzed.) It w1ll simply be noted here that, corresponding to the calcula-
tions for the P¥ibram meteor (with ¥ = 20 cm and s = 2), the following
approximate wvalues for l/rb and the resulting Reynolds numbers, Rey,, were
found:

h di
T wm ;_g Reb
75 0.00507  0.20Lx10
70 .00939 .138x10%
65 .01629 ST6TX10%
60 .02661 .35 103
55 .03928 .120x10*
50 .05039 .268x10%
45 .03%07 .857x10°
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With little extra effort one can also estimate the thermal conductivity
in the vapor:

Pr
= uR (B12)
3
With equation (E8) and the value of R from table II, equation (E1l2) gives
1/2
k - T _
1 gm cm sec-3 (°K)-1 ~ 196 10 ﬁ> (13)
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Symbol

Csol

Clig

~= = = 3
o § < 4? oo

TABLE I.- TRAJECTORY DATA FOR ONDREJOV METEOR PRIBRAM AND

sin O

ALTITUDE-DENSITY

= 0.6853; T

Altitude,
h/1 km

90
85
80
75
70
65
60
55
50
45

Il

0.284,
634, -5
L1735 -k
-393: ‘u
817, -k
-158; -3
.288, -3
.u99) '3
.88L, -3
.16k, -2

FUNCTION FROM REFERENCE 3

g sin 9 = 671.5 cm/sec?

Density function,

0

-5 = 0.284x107°

TABLE IT.- APPROXIMATE VALUES OF PHYSICAL CONSTANTS

Gas constant

Property

APPROPRTATE TO A STONE METEOR

Mass density of meteor
Specific heat in solid
Specific heat in liquid
Typical cold interior temperature
Fusion temperature
Latent heat of fusion
Latent heat of vaporization

Molecular weight of wvapor

Ratio of specific heats in wvapor,
CP/CV

Value

3.5
8.95x10°%
1.1x107

200

1800
2.65x10°
6.05x10*°

50
1.66x10°

1.4

B

Reference

Unit
gm/cm® 3
erg/em °K 12
erg/gm °K 12
°K 12
°K 12
erg/gm 12
erg/em 12
gm/mole 12
cm®/sec® °K 3
1

23




TABLE

III. - METEOR-TRACKING DATA FOR ONDREJOV

METEOR PRIBRAM (Ref. k4, table 7)

t,sec n/1 xm | V/10%° cm sec™?t
0 88.594 | 20.887 +0.009

.85806% | 76.289% | 20.86L4 *.0102
.856022 | 76,3182} 20.860 +.0072
1.73230 | 63.837 | 20.838 £.013
2.49383 | 52.970 | 20.773 *.013
2.69203 | 50.164 | 20.717 +.013
3.06758 | L44.858 | 20.459 +.02L

8Te data at these two

points

(both at about h = 76 km) were from

two different rotating-shutter
The first two points on the
table are from one camera, the

cameras,

remaining five points from the other

camera.

TABLE IV.- CALCULATTONS IN CONSTRUCTION OF DATA CURVE

h Values of <i6:gyé£%}__
1 km N R
10 cm 15 cm 20 cm 25 cm
90 -35.6 -39.4 -41.3 -42. 45
85 -21,65 | -30.08 -34.35 | -36.8
80 22.03 -.958 | -12.%4 -19.35
75 109.7 575 3L.5 15.8
70 279.0 170.3 116.2 Th.0
65 584 373 269 205.3

_%> for rb* equal to

35 cm
-43.65
-39.7
-27.2

-2.16

46,15

133.2

SOrgm

=hl 7
-41.9
-33.1
-15.5
18,45
79.5 j




TABLE V.- VELOCITY AND ACCELERATION DATA FROM GRAPHICALLY FITTED CURVES

h

v

av/ah

-av/dt

1 km

105 cm sec™t

20.877
20.878
20.8775
20.87k
20.863
20.8L2
20.811
20.767
20.688
20.468

20.860
20.861

QR

(a) Tp* = 10 cm

.

10-5 gec™1

102 cm sec™2

-35.6 -0.510
~-21.65 -.310
22.03 .3155
109.7 1.569
279.0 3.985
584 8.350
43 10.60
1,085 15.43
2,255 3L.97
8,330 116.95
= 15 cm
~39.4 -0.564
~30.08 -.430
-0.958 -.0137
57.5 8225
170 2.430
373 5.340
527.5 7.530
960 13.670
2,160 30.64
9,800 137.4
= 20 cm
-41.3 -0.590
-34.35 -. 4905
-12.4 -.1773
31.5 .450
116.2 1.66
269 3.8k
533 T.61
1,023 14,56
2,300 32.63
10,400 145.8
= 25 cm
-42. 45 -0.606
-36.8 -.526
-19.35 -.2765
15.8 .226
4.0 1.059
205.3 2.933
445 6.360
1,021 14.550
2,910 Ll . 100
7,150 100.2

55



TABLE V.- VELOCITY AND ACCELERATION DATA FROM GRAPHICALLY

FITTED CURVES - Concluded

h v dv/dn -gv/dt
1 km | 105 cm sec~1 105 sec”™l | 103 cm sec™2

(€) ry* =35 cm

90 20.854 -43.65 -0.62L
85 20.8565 -39.7 -.567
80 20.858 -27.2 -.3885
75 20.8585 -2.16 -.03085
70 20.8575 46.15 .660
65 20.852 133.2 1.903
60 20.837 480 6.855
55 20.800 1080 15.1h

50 20.711 2750 39.0

L5 20. 4795 8340 117.0

(f) rp* = 50 cm

90 20.852 ~hlo7 -0.639
85 20.85h -41.9 -.599
80 20.856 -33.1 - 473
75 20.8575 -15.5 -.2215
70 20.857 18.45 26L
65 20.854 79.5 1.137
60 20.8L43 373 5.325
55 20.812 934 13.300
50 20.72k 2680 38.00
L5 20.480 8070 113.4

NASA-Langley, 1968 — 12 A-25L45
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